

#### Data Sheet

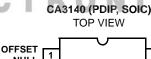
# 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output

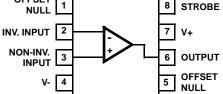
The CA3140A and CA3140 are integrated circuit operational amplifiers that combine the advantages of high voltage PMOS transistors with high voltage bipolar transistors on a single monolithic chip.

The CA3140A and CA3140 BiMOS operational amplifiers feature gate protected MOSFET (PMOS) transistors in the input circuit to provide very high input impedance, very low input current, and high speed performance. The CA3140A and CA3140 operate at supply voltage from 4V to 36V (either single or dual supply). These operational amplifiers are internally phase compensated to achieve stable operation in unity gain follower operation, and additionally, have access terminal for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5V below the negative supply terminal, an important attribute for single supply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load terminal short circuiting to either supply rail or to ground.

The CA3140A and CA3140 are intended for operation at supply voltages up to 36V ( $\pm$ 18V).

# Features


- MOSFET Input Stage
  - Very High Input Impedance (Z<sub>IN</sub>) -1.5TΩ (Typ)
  - Very Low Input Current (I<sub>I</sub>) -10pA (Typ) at  $\pm$ 15V
  - Wide Common Mode Input Voltage Range (V<sub>ICR</sub>) Can be Swung 0.5V Below Negative Supply Voltage Rail
  - Output Swing Complements Input Common Mode Range
- Directly Replaces Industry Type 741 in Most Applications
- Pb-Free Plus Anneal Available (RoHS Compliant)


## **Applications**

- Ground-Referenced Single Supply Amplifiers in Automobile and Portable Instrumentation
- Sample and Hold Amplifiers
- Long Duration Timers/Multivibrators (μseconds-Minutes-Hours)
- Photocurrent Instrumentation
- Peak Detectors
- Active Filters
- Comparators
- Interface in 5V TTL Systems and Other Low Supply Voltage Systems
- All Standard Operational Amplifier Applications
- Function Generators
- Tone Controls
- Power Supplies

Pinout

- Portable Instruments
- Intrusion Alarm Systems





FN957.10

# **Ordering Information**

| [                                 |                     |                                  |                |
|-----------------------------------|---------------------|----------------------------------|----------------|
| PART NUMBER<br>(BRAND)            | TEMP.<br>RANGE (°C) | PACKAGE                          | PKG.<br>DWG. # |
| CA3140AE                          | -55 to 125          | 8 Ld PDIP                        | E8.3           |
| CA3140AEZ*<br>(See Note)          | -55 to 125          | 8 Ld PDIP<br>(Pb-free)           | E8.3           |
| CA3140AM<br>(3140A)               | -55 to 125          | 8 Ld SOIC                        | M8.15          |
| CA3140AM96<br>(3140A)             | -55 to 125          | 8 Ld SOIC Tape and               | l Reel         |
| CA3140AMZ<br>(3140A) (See Note)   | -55 to 125          | 8 Ld SOIC<br>(Pb-free)           | M8.15          |
| CA3140AMZ96<br>(3140A) (See Note) | -55 to 125          | 8 Ld SOIC Tape and (Pb-free)     | d Reel         |
| CA3140E                           | -55 to 125          | 8 Ld PDIP                        | E8.3           |
| CA3140EZ*<br>(See Note)           | -55 to 125          | 8 Ld PDIP<br>(Pb-free)           | E8.3           |
| CA3140M<br>(3140)                 | -55 to 125          | 8 Ld SOIC                        | M8.15          |
| CA3140M96<br>(3140)               | -55 to 125          | 8 Ld SOIC Tap <mark>e and</mark> | Reel           |
| CA3140MZ<br>(3140) (See Note)     | -55 to 125          | 8 Ld SOIC<br>(Pb-free)           | M8.15          |
| CA3140MZ96<br>(3140) (See Note)   | -55 to 125          | 8 Ld SOIC Tape and (Pb-free)     | Reel           |

\*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

ELECTRONIC

#### **Absolute Maximum Ratings**

| DC Supply Voltage (Between V+ and V- Terminals) 36V |
|-----------------------------------------------------|
| Differential Mode Input Voltage 8V                  |
| DC Input Voltage                                    |
| Input Terminal Current 1mA                          |
| Output Short Circuit Duration∞ (Note 2) Indefinite  |
|                                                     |
| Operating Conditions                                |

| Temperature Range | -55 <sup>0</sup> C to 125 <sup>0</sup> C |
|-------------------|------------------------------------------|

#### **Thermal Information**

| Thermal Resistance (Typical, Note 1)    | θ <sub>JA</sub> ( <sup>o</sup> C/W) | θ <sub>JC</sub> ( <sup>o</sup> C/W)  |
|-----------------------------------------|-------------------------------------|--------------------------------------|
| PDIP Package*                           | 115                                 | N/A                                  |
| SOIC Package                            | 165                                 | N/A                                  |
| Maximum Junction Temperature (Plastic F |                                     | 150 <sup>0</sup> C                   |
| Maximum Storage Temperature Range       | 65                                  | <sup>o</sup> C to 150 <sup>o</sup> C |
| Maximum Lead Temperature (Soldering 1   | 0s)                                 | 300 <sup>0</sup> C                   |
| (SOIC - Lead Tips Only)                 |                                     |                                      |

\*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

#### NOTES:

- 1. θ<sub>JA</sub> is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details
- 0. 0 h a m a i man si t 1 1. 1. . ... . . . - : + I-

| Electrical Spe <mark>cifica</mark> tions V <sub>SUPPLY</sub> = ±1 | 5V, T <sub>A</sub> = 25 <sup>o</sup> C |                                                                                                    |           |                |         |        |
|-------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------|-----------|----------------|---------|--------|
|                                                                   |                                        |                                                                                                    |           | TYPICAL VALUES |         |        |
| PARAMETER                                                         | SYMBOL                                 | TEST CO                                                                                            | NDITIONS  | CA3140         | CA3140A | UNITS  |
| Input Offset Voltage Adjustment Resistor                          |                                        | Typical Value of Resistor<br>Between Terminals 4 and 5 or 4 and 1 to<br>Adjust Max V <sub>IO</sub> |           | 4.7            | 18      | kΩ     |
| Input Resistance                                                  | RI                                     |                                                                                                    |           | 1.5            | 1.5     | TΩ     |
| Input Capacitance                                                 | CI                                     |                                                                                                    |           | 4              | 4       | pF     |
| Output Resistance                                                 | R <sub>O</sub>                         |                                                                                                    |           | 60             | 60      | Ω      |
| Equivalent Wideband Input Noise Voltage<br>(See Figure 27)        | e <sub>N</sub>                         | BW = 140kHz, R <sub>S</sub> =                                                                      | 1ΜΩ       | 48             | 48      | μV     |
| Equivalent Input Noise Voltage (See Figure 35)                    | e <sub>N</sub>                         | R <sub>S</sub> = 100Ω                                                                              | f = 1kHz  | 40             | 40      | nV/√Hz |
|                                                                   |                                        |                                                                                                    | f = 10kHz | 12             | 12      | nV/√Hz |
| Short Circuit Current to Opposite Supply                          | I <sub>OM</sub> +                      |                                                                                                    | Source    | 40             | 40      | mA     |
|                                                                   | I <sub>OM</sub> -                      |                                                                                                    | Sink      | 18             | 18      | mA     |
| Gain-Bandwidth Product, (See Figures 6, 30)                       | f <sub>T</sub>                         |                                                                                                    |           | 4.5            | 4.5     | MHz    |
| Slew Rate, (See Figure 31)                                        | SR                                     |                                                                                                    |           | 9              | 9       | V/µs   |
| Sink Current From Terminal 8 To Terminal 4 to<br>Swing Output Low |                                        |                                                                                                    |           | 220            | 220     | μA     |
| Transient Response (See Figure 28)                                | tr                                     | $R_L = 2k\Omega$                                                                                   | Rise Time | 0.08           | 0.08    | μS     |
|                                                                   | OS                                     | C <sub>L</sub> = 100pF                                                                             | Overshoot | 10             | 10      | %      |
| Settling Time at 10V <sub>P-P</sub> , (See Figure 5)              | ts                                     | $R_L = 2k\Omega$                                                                                   | To 1mV    | 4.5            | 4.5     | μS     |
|                                                                   |                                        | C <sub>L</sub> = 100pF<br>Voltage Follower                                                         | To 10mV   | 1.4            | 1.4     | μS     |

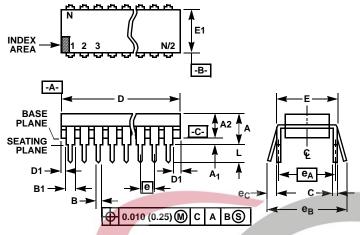
#### **Electrical Specifications** For Equipment Design, at V<sub>SUPPLY</sub> = $\pm 15$ V, T<sub>A</sub> = 25<sup>o</sup>C, Unless Otherwise Specified

|                      |                 | CA3140 |     | CA3140A |     |     |     |       |
|----------------------|-----------------|--------|-----|---------|-----|-----|-----|-------|
| PARAMETER            | SYMBOL          | MIN    | ТҮР | MAX     | MIN | TYP | MAX | UNITS |
| Input Offset Voltage | V <sub>IO</sub> | -      | 5   | 15      | -   | 2   | 5   | mV    |
| Input Offset Current | IIO             | -      | 0.5 | 30      | -   | 0.5 | 20  | pА    |
| Input Current        | lı              | -      | 10  | 50      | -   | 10  | 40  | pА    |

|                                                |                            | CA3140 |                |     | CA3140A |                |     |                    |
|------------------------------------------------|----------------------------|--------|----------------|-----|---------|----------------|-----|--------------------|
| PARAMETER                                      | SYMBOL                     | MIN    | ТҮР            | MAX | MIN     | ТҮР            | MAX | X UNITS            |
| Large Signal Voltage Gain (Note 3)             | A <sub>OL</sub>            | 20     | 100            | -   | 20      | 100            | -   | kV/V               |
| (See Figures 6, 29)                            |                            | 86     | 100            | -   | 86      | 100            | -   | dB                 |
| Common Mode Rejection Ratio                    | CMRR                       | -      | 32             | 320 | -       | 32             | 320 | μV/V               |
| (See Figure 34)                                |                            | 70     | 90             | -   | 70      | 90             | -   | dB                 |
| Common Mode Input Voltage Range (See Figure 8) | VICR                       | -15    | -15.5 to +12.5 | 11  | -15     | -15.5 to +12.5 | 12  | V                  |
| Power-Supply Rejection Ratio,                  | PSRR                       | -      | 100            | 150 | -       | 100            | 150 | μV/V               |
| $\Delta V_{IO}/\Delta V_S$ (See Figure 36)     |                            | 76     | 80             | -   | 76      | 80             | -   | dB                 |
| Max Output Voltage (Note 4)                    | V <sub>OM</sub> +          | +12    | 13             | -   | +12     | 13             | -   | V                  |
| (See Figures 2, 8)                             | V <sub>OM</sub> -          | -14    | -14.4          | -   | -14     | -14.4          | -   | V                  |
| Supply Current (See Figure 32)                 | +                          | -      | 4              | 6   | - /     | 4              | 6   | mA                 |
| Device Dissipation                             | PD                         |        | 120            | 180 | -       | 120            | 180 | mW                 |
| Input Offset Voltage Temperature Drift         | $\Delta V_{IO} / \Delta T$ | -      | 8              | -   | -       | 6              | -   | μV/ <sup>o</sup> C |

### **Electrical Specifications** For Equipment Design, at $V_{SUPPLY} = \pm 15V$ , $T_A = 25^{\circ}C$ , Unless Otherwise Specified (Continued)

NOTES:


3. At  $V_0 = 26V_{P-P}$ , +12V, -14V and  $R_L = 2k\Omega$ .

4. At  $R_L = 2k\Omega$ .

#### **Electrical Specifications** For Design Guidance At V+ = 5V, V- = 0V, T<sub>A</sub> = 25°C

|                                                                |       |                                           | TYPICAL | TYPICAL VALUES |       |  |
|----------------------------------------------------------------|-------|-------------------------------------------|---------|----------------|-------|--|
| PARAMETER                                                      |       | SYMBOL                                    | CA3140  | CA3140A        | UNITS |  |
| Input Offset Voltage                                           |       | V <sub>IO</sub>                           | 5       | 2              | mV    |  |
| Input Offset Current                                           |       | l'iol                                     | 0.1     | 0.1            | pА    |  |
| Input Current                                                  |       | lı lı                                     | 2       | 2              | pА    |  |
| Input Resistance                                               |       | RI                                        | 1       | 1              | TΩ    |  |
| Large Signal Voltage Gain (See Figures 6, 29)                  |       | A <sub>OL</sub>                           | 100     | 100            | kV/V  |  |
|                                                                |       |                                           | 100     | 100            | dB    |  |
| Common Mode Rejection Ratio                                    |       | CMRR                                      | 32      | 32             | μV/V  |  |
|                                                                |       |                                           | 90      | 90             | dB    |  |
| Common Mode Input Voltage Range (See Figure 8)                 |       | VICR                                      | -0.5    | -0.5           | V     |  |
|                                                                |       |                                           | 2.6     | 2.6            | V     |  |
| Power Supply Rejection Ratio                                   | E     | PSRR<br>ΔV <sub>IO</sub> /ΔV <sub>S</sub> | 100     | 100            | μV/V  |  |
|                                                                |       |                                           | 80      | 80             | dB    |  |
| Maximum Output Voltage (See Figures 2, 8)                      |       | V <sub>OM</sub> +                         | 3       | 3              | V     |  |
|                                                                |       | V <sub>OM</sub> -                         | 0.13    | 0.13           | V     |  |
| Maximum Output Current: S                                      | ource | I <sub>OM</sub> +                         | 10      | 10             | mA    |  |
| S                                                              | ink   | I <sub>OM</sub> -                         | 1       | 1              | mA    |  |
| Slew Rate (See Figure 31)                                      |       | SR                                        | 7       | 7              | V/μs  |  |
| Gain-Bandwidth Product (See Figure 30)                         | fT    | 3.7                                       | 3.7     | MHz            |       |  |
| Supply Current (See Figure 32)                                 |       | l+                                        | 1.6     | 1.6            | mA    |  |
| Device Dissipation                                             |       | PD                                        | 8       | 8              | mW    |  |
| Sink Current from Terminal 8 to Terminal 4 to Swing Output Low |       |                                           | 200     | 200            | μA    |  |

# Dual-In-Line Plastic Packages (PDIP)



#### NOTES:

- 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- E and e<sub>A</sub> are measured with the leads constrained to be perpendicular to datum -C-.
- 7.  $e_B$  and  $e_C$  are measured at the lead tips with the leads unconstrained.  $e_C$  must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 0.045 inch (0.76 1.14mm).


#### E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

|                | INC   | HES   | MILLIMETERS |       |       |
|----------------|-------|-------|-------------|-------|-------|
| SYMBOL         | MIN   | MAX   | MIN         | MAX   | NOTES |
| А              | -     | 0.210 | -           | 5.33  | 4     |
| A1             | 0.015 | -     | 0.39        | -     | 4     |
| A2             | 0.115 | 0.195 | 2.93        | 4.95  | -     |
| В              | 0.014 | 0.022 | 0.356       | 0.558 | -     |
| B1             | 0.045 | 0.070 | 1.15        | 1.77  | 8, 10 |
| С              | 0.008 | 0.014 | 0.204       | 0.355 | -     |
| D              | 0.355 | 0.400 | 9.01        | 10.16 | 5     |
| D1             | 0.005 | - /   | 0.13        | -     | 5     |
| E              | 0.300 | 0.325 | 7.62        | 8.25  | 6     |
| E1             | 0.240 | 0.280 | 6.10        | 7.11  | 5     |
| е              | 0.100 | BSC   | 2.54        | BSC   | -     |
| eA             | 0.300 | BSC   | 7.62        | BSC   | 6     |
| е <sub>В</sub> | -     | 0.430 | -           | 10.92 | 7     |
| L              | 0.115 | 0.150 | 2.93        | 3.81  | 4     |
| N              | 3     | 3     |             | 8     | 9     |

Rev. 0 12/93

# SKYTECH

# Small Outline Plastic Packages (SOIC)



#### NOTES:

- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

#### **M8.15** (JEDEC MS-012-AA ISSUE C) 8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

|        | INCHES         |                | MILLIM         | MILLIMETERS    |       |  |
|--------|----------------|----------------|----------------|----------------|-------|--|
| SYMBOL | MIN            | MAX            | MIN            | MAX            | NOTES |  |
| А      | 0.0532         | 0.0688         | 1.35           | 1.75           | -     |  |
| A1     | 0.0040         | 0.0098         | 0.10           | 0.25           | -     |  |
| В      | 0.013          | 0.020          | 0.33           | 0.51           | 9     |  |
| С      | 0.0075         | 0.0098         | 0.19           | 0.25           | -     |  |
| D      | 0.1890         | 0.1968         | 4.80           | 5.00           | 3     |  |
| E      | 0.1497         | 0.1574         | 3.80           | 4.00           | 4     |  |
| е      | 0.050          | BSC            | 1.27           | BSC            | -     |  |
| Н      | 0.2284         | 0.2440         | 5.80           | 6.20           | -     |  |
| h      | 0.0099         | 0.0196         | 0.25           | 0.50           | 5     |  |
| L      | 0.016          | 0.050          | 0.40           | 1.27           | 6     |  |
| N      | 8              | 3              | 8              | 3              | 7     |  |
| α      | 0 <sup>0</sup> | 8 <sup>0</sup> | 0 <sup>0</sup> | 8 <sup>0</sup> | -     |  |

ELECTRO

Rev. 0 12/93